Modélisation et Contrôle harmonique temps réel pour les chaines d'actionnement electriques.

Pierre Riedinger¹, Jamal Daafouz¹, and Maxime Grosso*^{1,2}

 $^1\mathrm{Centre}$ de Recherche en Automatique de Nancy – Université de Lorraine - CRAN CNRS UMR 7039 – France $^2\mathrm{Safran}$ Electronics Defense – SAFRAN (FRANCE) – France

Résumé

Nous présentons une approche de modélisation dite "harmonique" permettant de transformer des systèmes temps périodiques en système temps invariant de dimension infinie. Cette approche se revèle tout particulierement adaptée à la modélisation et la synthèse de contrôle pour les convertisseurs de puissance, tout en permettant d'integrer des objections de régulation des taux de distorsion harmonique. Nous étendons cette approche à la médélisation des machines electriques, dont le modèle est périodique vis à vis de l'un des parametre (l'angle electrique) mais à fréquence variable, sous couvert d'hypothèse simplificatrices, un contrôle robuste par méthode polytopique dans le domaine harmonique permet de réaliser une commande de Moteur à Aimant Permanent incluant également des objectifs secondaires de régulation de contenu harmonique.

Mots-Clés: Harmonic Modelisation, Active Filtering, Lyapunov Analysis

^{*}Intervenant